森吉で観測された後続波の時間変化

小菅 正裕(弘前大学理工学研究科)

1. はじめに

2011年東北地方太平洋沖地震後に活発化 した秋田県北部の森吉山周辺(図1)での地 震活動は,震源のマイグレーションが明瞭で, 観測波形のS波の後には顕著な後続波が見ら れる.また,この地域では過去に群発的な地 震活動が繰り返し発生しており,森吉山の西 方15 km 程度の領域は深部低周波地震の発生 域ともなっている.これらの観測事実は,地 震活動に地殻流体が関与していることを示唆 する.そこで,震源の時空間変化を圧力の拡 散で解釈し,圧力源の分布を推定するととも に,後続波をもたらす散乱源の位置を推定し た.さらに,散乱源の実体を解明することを 目的に,後続波の時間変化を調べた.

2. 震源移動と散乱源

我々は,森吉山付近における震源決定精度 の向上を目的とした臨時地震観測を2012年

9月から行っている. 震源決定には, 最も活発な地震クラスター 直上の1点と, その7 km 程度北西のアレイの中の1点を用 いた. これら臨時観測点のデータを加え, Double-difference 法を用いて震源の再決定を行った. 震源は顕著なマイグレー ションを示し, そのパターンは複雑である. 震源のマイグレー ションを間隙流体圧の拡散によると解釈し, 圧力源の位置と 圧力増加が生じた時間, 及び流体の拡散係数を, 複数のマイ グレーションに対して求めた. その結果, 拡散係数として 0.01 ~1.0 m²/s の値が推定された. この値は, 水の圧入による誘 発地震活動などから推定した先行研究の結果と調和的である.

観測された地震波には、S 波の後に顕著な後続波が見られる. これを S-S 散乱波と仮定して, back-projection 法で散乱 源の位置を推定をした. その結果, 散乱源は森吉山の北西約5

図 2 平均残差エンベロープをデータとして, back-projection 法で推定した相 対的な散乱強度(brightness)の分布. 断面図は P-Q に沿うもの. 用いた観測 点は白抜きの逆三角形で, 震源クラスターを A ~ E で表す. 色のついた丸は 震源の時空間分布から推定した圧力源の位置を示す [Kosuga, 2014].

図1(左及び下) 森吉山の 位置と赤い四角の枠内の震源 分布(下).拡大図の震源は, 臨時観測点の験測値を含めて 決め直したもの.三角印は観 測点の位置を表す.A~Eは 散乱源の位置を推定するのに 用いたクラスターを表す(図 2).

km, 深さ13 km 付近に存在することがわかった(図2). この深さは, 森吉山付近の深部低 周波地震の震源深さの上限にほぼ対応する. このことも, 森吉山周辺での地震活動が地殻 流体にトリガーされていることを示唆する.

3. 後続波の波形の時間変化

散乱波が流体起源であれば,流体の移動に 伴って散乱波の出現時刻や波形が変化する可 能性があるので,後続波の時間変化を検討し た.そのためには,震源位置が同じ地震を抽 出する必要がある.ここでは,震源に最も近 い定常観測点のHi-net 阿仁 (N.ANIH)の波 形を調べた.図3に示される265 個の地震 について,S波到着前0.1秒,到着後0.5秒 の区間の3成分波形の相互相関を計算した. 次に,相関係数を基に地震のグループ分けを 行った.その結果を図3に色分けして示す.

図4は,8Hz帯において最も数が多いグ ループ2について、S波と後続波の波形の時 間変化を見たものである。下段は振幅を色で 表している。S波初動から1.5秒程度の範囲 の波形は、発生時期が変わってもあまり変化 していない.しかし、後続波が現れている (図4上段で水色の振幅が大きい)時間帯で は、スタック波形の振幅が顕著に小さく、個々 の波形の位相が揃っていないことを表してい る. 下段の波形を見ると, 黒い枠で囲んだ部 分の波形は、それ以前の期間(図では下)と は異なっているように見える. これが波形の 時間変化であることを確認するには、異なる 震源位置の地震波形、及び他の観測点での波 形も用いて詳細に検討する必要があるが、変 化の可能性を示す結果として興味深い。

文献

Kosuga, M., Seismic activity near the Moriyoshizan volcano in Akita Prefecture, northeastern Japan: implications for geofluid migration and a midcrustal geofluid reservoir, Earth Planets Space, 66: 77, 2014

図3 阿仁観測点のS波部分の3成分波形の相関を用い て分類した震源.丸の色がグループ番号を表す.震源要 素は気象庁一元化カタログを用いている.

図4 8 Hz 帯の波形相関からグループ2 に分類された地 震について,阿仁観測点のS 波とその後続波部分の3 成 分波形.S 波が0.5 秒の位置にあるように示している.上 段は,水色が個々の波形で赤がスタックした波形を表す. 下段は振幅を色で表し,地震の発生順に並べたもの.黒 い四角で囲んだ部分の波形がそれ以前とは異なる.

謝辞:解析には,防災科研 Hi-net で収録され た地震波形データと気象庁一元化震源カタロ グを利用させていただきました.記して謝意 を表します.