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ABSTRACT. We present an imaging technique to locate a weak perturbation in a 
multiple scattering environment. We study the change using both the decorrelation of 
the seismic coda (with the LOCADIFF technique) and the relative velocity change 
 (with the Coda Wave Interferometry technique).  We derive a formula to predict the 
spatio-temporal variation of the diffuse coda waves induced by an extra scatterer or a 
local velocity change. We present numerical simulations that confirms the theoretical 
models, and application to real experiments in concrete and on a volcano. 

 
INTRODUCTION: In very heterogeneous media constituted by a myriad of scatterers, 
the incident wave is scattered many many times before reaching the receiver, such that the 
wave enters the multiple scattering regime. Imagine now that, among the myriad of 
heterogeneities, a local change occurs, either due to a local smooth velocity change or to a 
local change of structure (position/size of the scatterer for instance). To detect and locate 
the change, we propagate a wave before and after the change while keeping sources and 
receivers fixed. This yields to two set of coda: ϕA(t) (before) and ϕB(t) (after). We will take 
advantage of the very high sensitivity of late arrivals constituting the seismic or acoustic 
coda, in a two steps process: 

1) The detection is performed quantitatively by measuring the decorrelation 
(LOCADIFF) and/or the relative velocity change (CWI) in different time windows 
in the coda [1-3].  

2) The location of the change is performed using a sensitivity kernel based on the 
probability of transport of the wave intensity. 

 
DATA PROCESSING: In order to retrieve the dV/V in real data, the coda can be 
processed as a whole or in different time windows with the stretching technique [4]: the 
final waveform  is interpolated at times  and the correlation coefficient with 

the initial waveform is evaluated: 

  
where T is the length of the time-window centered at time t. This calculation is performed 
for various stretching factors. The stretching factor 

€ 

εmax that corresponds to the apparent 
relative velocity change maximizes the correlation coefficient. In the case of a 
homogeneous change, the apparent change is: 

€ 

εmax=dV/V. We also measure the 
decorrelation coefficient

 

€ 

Kd (S,R,t) =1−CC(εmax,t) in different time windows [3-4]. 
 
Imagine now that the change is not global, but located at a given position x (see figure 1). 
If the modification is a (smooth, small and weak) velocity change, the wavepackets going 
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through this area will be slightly delayed; if the modification is a change of a scatterer, the 
waves going through this defect will be decorrelated. In both cases, only wavepaths 
propagating in the region of the change will be affected, other trajectories will remain the 
same.  
Let’s now consider what happens in the time domain: at early times, the diffusive halo has 
not reach the location of the change and the waves remain the same (left part of figure 1). 
Later on, some of the waves have interacted with the change and the coda starts to be 
slightly modified. 

 
FIGURE 1.  Schematic view of the 
spatio-temporal sensitivity of coda 
waves to a local change. The diffusive 
halo is represented in pink. At early 
times (first two snapshots on the left), 
the waves propagating from the source S 
to the receiver R have hardly felt the 
change and the waveforms remain the 
same. Later on (two snapshots on the 
right), some waves have hit the defect: 
the coda is decorrelated in the case of a 
scatterer change, or delayed in the case 
of a local velocity change. 
 

 
THEORY: In the case of a local (weak) velocity change, the apparent relative velocity 
change observed in the coda will be [5]: 

€ 

ε app(S,R,x,t) =
dv
v
ΔV
t

g(S,x,u)g(x,R,t − u)du
0

t
∫

g(S,R,t)
, with t the time in the coda, and ΔV the 

volume of the change. In the case of a change of scatterer, the decorrelation in the coda 

will be [3,6-7]: 

€ 

Kd(S,R,x,t) =1− cσ
2

g(S,x,u)g(x,R,t − u)du
0

t
∫

g(S,R,t)
, where σ is the scattering 

cross-section of the change, and c the average velocity. In both cases, the main quantity to 
study is the sensitivity kernel (right fraction) expressed as the ratio between the amount of 
waves passing through the change (top) and the total amount of waves propagating from 
the source to the receiver (bottom). g(S,R,t) is the probability of transport of the wave from 
the source S to the point R over a time t. In most cases g is unknown, but can be for 
instance approximated by the solution of the diffusion equation or by the radiative transfer 
equation. The sensitivity kernel depends on the position of the source and receiver, and on 
the time, which are known parameters. It also depends on the amplitude and location of the 
change, which are unknowns. By using a large amount of independent data (several 
sources, receivers and/or time windows) it is possible to recover these unknowns [3,8]. 
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