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Abstract
We made laboratory measurements of velocity
anisotropy of biotite schist from Hidaka metamorphic
belt, Hokkaido, Japan, under confining pressures up
to 150 MPa, and interpreted the measured velocity
anisotropy by employing a crack model proposed by
Nishizawa (1982). The biotite schist shows foliation
plane and lineation in the foliation plane. The crystallo-
graphic layer of biotite and the crack planes are mostly
align parallel to the foliation plane. Anisotropy of the
rock is basically transverse isotropy (TI) with the sym-
metry axis perpendicular to the foliation. The crack
model treats cracks as oblate spheroid inclusions, and
cracks are inserted into an initially anisotropic matrix
having TI symmetry with all the crack normal parallel to
the symmetry axis. Then the overall elastic properties of
the crack-containing rock also show TI. The crack model
suggests that the changes of theP - and S-velocities
under pressure can be interpreted as closure of aligned
cracks under pressure. Comparing the calculated phase
velocities ofP - andS-waves with the phase velocities
obtained from Thomsen’s approximation, we found that
Thomsen’s approximations are applicable forP - and
SH-waves for most of the cases. However, for the phase
velocity of SV -wave, Thomsen’s approximation shows
considerable discrepancy against exact velocity values
when crack density is large or when cracks are filled with
gas.

Introduction

It is well known that oriented cracks produce velocity
anisotropy. If all cracks are aligned in the same di-
rection in an isotropic rock, the overall elastic proper-
ties of the rock show transverse isotropy (TI) where the
P - andS- velocities are rotationally symmetric. Veloc-
ity anisotropy is mainly controlled by crack shape: thin
cracks produce strong velocity anisotropy. On the other
hand, some rocks have an intrinsic velocity anisotropy
caused by the lattice-preferred orientation (LPO) of
anisotropic minerals. When rock anisotropy is produced
by both oriented cracks and LPO of anisotropic minerals,
the rock is modeled as a composite that contains oriented
cracks in an anisotropic medium. Nishizawa (1982) pre-
sented a method to calculate velocity anisotropy caused
by aligned cracks in an anisotropic matrix. This method
is based on calculation of the Eshelby’s tensor in an
anisotropic medium. The integral given by Lin and Mura

(1973) provides the Eshelby’s tensor by numerical cal-
culations, and overall elastic properties of the crack-
containing rock can be obtained by using the calculated
Eshelby tensor. This approach has been used for inter-
preting VSP (Vertical Seismic Profiling) data (Douma &
Crampin, 1990), or for modeling the velocity anisotropy
of shale (Hornby et al., 1994). The same approach
has been employed by Singh et al. (2000), where they
showed a possibility of uniqueS-velocity anisotropy pro-
duced by melt inclusions in the inner core of the Earth.

Recently, Nishizawa and Yoshino (2000) extended
Nishizawa’s approach to calculate velocity anisotropy of
mica-rich rocks. In their treatment, mica minerals are
inserted into an initially isotropic matrix with their crys-
tallographic axes aligned in the same direction. Since
elastic anisotropy of mica mineral can be treated as
TI symmetry, the overall elastic properties of rock also
show TI. Biotite-rich rocks show a bulge of theSV -
wave phase velocity surface. This produces a line sin-
gularity of S-wave, whereSV - andSH-wave phase ve-
locity surfaces intersect each other (Crampin & Yedlin,
1981). The results of the inclusion model well explain
the laboratory-measured intrinsic velocity anisotropy in
biotite-rich schist (Takanashi et al., 2000).

Here, we model crack-containing biotite-rich rocks
by using the same approach of Nishizawa (1982) or
Nishizawa and Yoshino (2000), where aligned oblate
spheroidal cracks are distributed in an anisotropic ma-
trix of TI symmetry. We will present velocity anisotropy
of the crack-containing biotite-rich rock and compare the
calculated anisotropy with the laboratory velocity mea-
surements under confining pressures, where cracks are
closed with increasing the confining pressure.

Inclusion model

To estimate the overall elastic constants of crack-
containing medium, we use the Eshelby’s composite
medium model consisting of matrix and inclusion, and
calculate change of the elastic energy due to inclusions.
Elastic constants (or compliance constants) are given by
differentiation of elastic energy with respect to strain (or
stress).

We consider that the matrix material has homoge-
neous strain,eA

ij , or stress,σA
ij . When an inclusion ap-

pears inside the matrix, the composite medium becomes
an internal stress state. We regard the composite as an
equivalent homogeneous medium, and estimate elastic
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energy corresponding to the equivalent strain,eA
ij , or

stress,σA
ij . To calculate the elastic energy change due

to inclusions (cracks), Eshelby (1957) introduced stress-
free straineT

ij (also called eigen strain; Lin and Mura,
1973).

In energy calculation, there are two conditions de-
fined at the far field of the composite medium: constant
applied force and constant displacements (Eshelby, 1957;
Yamamoto et al., 1981; Nishizawa, 1982). For calcu-
lating the energy of composite medium, Eshelby (1957)
presented an idea that replaces the inclusion with matrix
material and gives a fictitious stress-free strain inside the
inclusion. He demonstrated that the change of the elastic
energy corresponding to the equivalent straineA

ij or stress
σA

ij is given by the fictitious stress-free straineT
ij as

∆E = ∓(1/2)σA
ije

T
ijφ , (1)

where the sign∓ denotes the two conditions: constant
external force and constant surface displacements, re-
spectively.φ is the volume fraction of inclusions.σA

ij is
related to homogeneous strain through elastic constants
of the matrixc0

ijkl asσA
ij = c0

ijkle
A
kl.

Eshelby (1957) derived a relationship between the
fictitious stress-free straineT

ij and strain in homogeneous
matrix eA

ij . Let c′ijkl be the elastic constants of the inclu-
sion. The relation betweeneA

ij andeT
ij is given by using

Eshelby’s tensor,Sijkl.

c0
ijkle

T
kl = ∆cijkle

A
kl + ∆cijklSklmneT

mn , (2)

where∆cijkl is the difference of the elastic constants be-
tween matrix and inclusion:

∆cijkl = c0
ijkl − c′ijkl . (3)

Equation (2) shows that the fictitious stress-free straineT
ij

can be obtained by strain of the matrix materialeA
ij , Es-

helby’s tensorSijkl, and the elastic constants of matrix
and inclusion,c0

ijkl andc′ijkl. In crack problems,c′ijkl

is given by bulk modulus of fluid (gas or liquid). When
the matrix is TI, Eshelby’s tensorSijkl can be calculated
by numerical integrations given by Lin and Mura (1973)
(Nishizawa, 1982; Douma, 1988).

The composite is regarded as an equivalent homoge-
neous medium and its elastic energy is given by the fol-
lowing equations, corresponding to the conditions shown
in equation (1):

1
2
c∗ijkl

−1σA
ijσ

A
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1
2
c0
ijkl

−1
σA

ijσ
A
kl +

1
2
σA

ije
T
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A
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1
2
σA

ije
T
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wherec∗ijkl denotes elastic constants of the equivalent ho-

mogeneous medium, andc∗ijkl
−1 andc0

ijkl
−1

denote the
inverse of the matricesc∗ijkl andc0

ijkl, respectively. The
energy given by equation (4) or (5) is valid only whenφ is
very small. Therefore, we start from the initial inclusion-
free matrix and repeat calculation with a small incre-
ment of inclusion volume∆φ, regarding the composite
of the previous step as an equivalent homogeneous matrix
material. This is called Differential Equivalent Medium
Method (DEM) or Numerical Self Consistent Approach
(NSC) (Le Ravalec and Gueguen, 1996a, b; Yamamoto,
1981). The equations are given by

————————————————————— ↑
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wherec
∗(n)
ijkl andc

∗(n)
ijkl

−1
are the elastic constants and its

inverse (compliance) obtained at thenth step of calcula-
tion, respectively, and the superscripts(n − 1) of c0

ijkl,
eA
ij , σA

ij and eT
ij denote the values of(n − 1)th step.

e
T(n−1)
ij is given by Eshlby’s tensor for the effective ho-

mogeneous medium at the(n−1)th step. DEM evaluates
the stress or strain change inside the composite medium
by assuming the composite medium as a new homoge-
neous matrix with new elastic constants.

Numerical calculation

Elastic constants of anisotropic rock

To calculate elastic constants of the crack-containing
biotite-rich rock, we must calculate elastic properties of
the matrix medium. First we consider a biotite-rich rock

consisting of isotropic matrix and 30 % volume frac-
tion of biotite. We assume the elastic constants of the
isotropic matrix asλ = µ = 35 GPa. Biotite is a mono-
clinic crystal, but it can be treated as a hexagonal crystal
having the elastic constants shown in Table 1 (Alekesan-
drov & Ryzhova, 1961) by assuming the symmetry axis
perpendicular to the crystallographic layered sheet.

Table. 1

C11 C33 C44 C66 C13

biotite 186.0 54.0 5.8 76.8 11.6

Hereafter, we use the Voigt notationCij for denoting
the measured and calculated values, instead of the no-
tation used in theoretical formulations,cijkl. Note that
C12 = C11−2C66. Nishizawa & Yoshino (2000) pointed
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out that the crystal shape of biotite controls velocity
anisotropy of biotite-rich rocks. Since biotite usually ap-
pears as thin crystals, its shape is assumed as an oblate
spheroid with the major axisa and the minor axisc. The
crystal shape is expressed by the aspect ratioα = c/a

Table 2 is the elastic constants of the biotite-rich rock for
the biotite crystal aspect ratio 1/20, which are used as
elastic constants of the rock matrix.

Table. 2

C11 C33 C44 C66 C13

rock matrix 126.6 81.9 15.8 47.0 24.4

Next, we assume that the crack-free biotite-rich rock as
a homogeneous matrix and insert aligned micro cracks
into the matrix. In each step of the calculation, we have
two elastic constants calculated from the equations (6)
and (7). The difference between two elastic constants be-
comes large as the difference of elastic constants between
inclusion and matrix becomes large. The difference is
also controlled by crack aspect ratio. We selected a small
∆φ value for a small crack aspect ratio, and calculate the
average obtained from (6) and (7).

Thomsen’s anisotropic parameter

In TI media,P - andS-waves are expressed asqP , qSV

andSH in exact notations. However we use simple no-
tationsP , SV andSH, because those waves are clearly
distinguished in TI media, and cause no confusion.SV -
wave is polarizes in the plane containing the symmetry
axis, whereasSH-wave polarizes in the plane perpen-
dicular to the symmetry axis. When anisotropy of TI is
weak, phase velocities in the directionθ (an angle mea-
sured form the symmetry axis) are given by Thomsen’s
anisotropic parameters and theP - andS-velocities along
the symmetry axis,VP (0) andVS(0).

VP (θ) = VP (0)(1 + δ sin2 θ cos2 θ + ε sin4 θ), (8)

VSV (θ) = VS(0)(1 + σ sin2 θ cos2 θ) , (9)

VSH(θ) = VS(0)(1 + γ sin2 θ) , (10)

whereε, γ andδ are defined by elastic constants or ap-
proximated by the velocity valuesθ= 0,π/2 andπ/4:

ε =
C11 − C33

2C33
≈ VP (π)− VP (0)

VP (0)
, (11)

γ =
C66 − C44

2C44
≈ VSH(π)− VSH(0)

VSH(0)
, (12)

δ =
(C13 + C44)2 − (C33 − C44)2

2C13(C33 − C44)

≈ 4
[
VP (π/4)
VP (0)

− 1
]
−

[
VP (π/2)
VP (0)

− 1
]

, (13)

andσ is given by

σ =
(

VP (0)
VS(0)

)2

(ε− δ) . (14)

The phase velocity surface ofSV -wave show a bulge
aroundθ = π/4 depending on the value ofσ. We exam-
ine applicability of Thomsen’s approximation by com-
paring the approximate velocities with the exact veloci-
ties.

Phase velocity surface

For calculating phase velocity, we assume the rock den-
sity as 2.75× 103 kg/m3. Fig. 1 a-d show phase velocity
surfaces ofP -, SV - andSH-waves projected on the sec-
tion including the symmetry axis.

We assume thin cracks with aspect ratio 0.01 filled
with fluid. The bulk modulus of the crack-filling fluid
controls anisotropy. We change fluid bulk modulusKf

from 0.01 to 1 GPa. The large and small values of bulk
modulus correspond to the cracks filled with liquid or
gas, respectively. (a) and (b) show the phase velocity
surface ofP -wave for the crack densities 0.02 and 0.06.
Thomsen’s approximation and the velocity of the crack-
free rock are also shown in the same figure. (c) and
(d) show the phase velocity surface ofSV - and SH-
waves for the same fluid bulk modulus, corresponding to
crack densities 0.02 and 0.06, respectively. (e)-(h) are the
phase velocity surfaces for the fluid bulk modulus 1 GPa:
(e) and (f) are theP -velocity for crack density 0.02 and
0.06, respectively, and (g) and (h) are theSV - andSH-
velocities for crack densities 0.02 and 0.06, respectively.
We calculate Thomsen’s anisotropic parameters from the
P - andS-velocities in the axial directions and from the
P -velocity in the directionθ=π/4, because velocity val-
ues are the primary data of the field observations. For
the most cases of theP - andSH- velocities, Thomsen’s
approximation agrees fairly well with the exact velocity
values calculated from elastic constants of the cracked
rock. However, when crack density is small or the fluid
bulk modulus is large, Thomsen’s approximation under-
estimates theSV -velocity in the rangeθ < π/4, and
overestimates in the rangeθ > π/4. When crack density
is large and the fluid bulk modulus is small, Thomsen’s
approximation underestimates theSV -velocity for all di-
rections. The discrepancy becomes large as the crack
density increases, or as the bulk modulus of the crack-
filling fluid becomes small.
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Kf=0.01 GPa

Kf=1 GPa

Fig. 1 Phase velocity surfaces ofP -, SV -, andSH-waves for the rock containing 30% volume ratio of
biotite and cracks with aspect ratio 0.01. The bulk modulus of crack-filling fluid is (a)-(d) 0.01 GPa, and
(e)-(h) 1 GPa. The left column, (a), (c), (e) and (g) correspond to crack density 0.02. The right column, (b),
(d), (f) and (h) correspond to crack density 0.06.
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Laboratory velocity measurements of biotite
schist

We made laboratory velocity measurements of Hidaka
biotite schist under confining pressures up to 150 MPa.
The rock was sampled from Hidaka metmorphic belt,
Hokkaido, Japan, and shows foliation and lineation that
is parallel to the foliation plane. The layering sheet of
biotite crystals and the crack planes are mostly align par-
allel to the foliation plane.P - and the two polarizedS-
velocities were measured along the three axes: perpen-
dicular to the foliation plane (z-axis) and the two direc-
tion in the foliation plane, parallel and perpendicular to
the lineation (x- andy-axis, respectively). The polariza-
tion directions of the measuredS-waves are located in the
planes that are parallel or perpendicular to the symmetry
axis.

The high pressure axial velocity values and the bi-
otite LPO data indicate that anisotropy is basically TI
but slightly shifts to orthorhombic because of slight mis-
alignments of the layering sheets of biotite from the fo-
liation plane in they-direction (Takanashi et al., 2000).
We approximate the anisotropy by a combination of two
TI type anisotropy in thexz-plane and theyz-plane,
both with the symmetry axis in thez-direction (Tsvankin
1997). Additional velocity measurements were made
along the direction 45 degrees from thez-axis in thexz-

andyz-planes forP -, SV - andSH-waves. We observed
a bulge ofSV -wave phase velocity in thexz-plane under
high confining pressure. In thexz-plane,S-wave shows
singularity (Takanashi et al., 2000).

Fig. 2 shows the changes ofP - andS-velocities with
respect to confining pressure. TheP -velocity perpen-
dicular to the foliation plane, (VPz), increases 1.5 km/s
from atmospheric pressure to 150 MPa, whereas theP -
velocity in the lineation direction, (VPx), increases only
0.5 km/s in the same pressure interval. This suggests
that the most cracks are aligned parallel to the foliation
plane. TheP -velocity along 45 degress from thez-axis,
VPx45z increases with increasing the confining pressure
and become close to theVPz value under high pressures.
This corresponds to the non-ellipticity of the intrinsic
P -velocity of biotite-rich rock (Nishizawa and Yoshino,
2000; Takanashi et al., 2000). TheS-velocities in thex-
andz-directions change only little with increasing con-
fining pressure, because effects of micro cracks onS-
velocities are weak.VSV x45z increases with increasing
pressure, whereasVSHx45z increases slightly below 40
MPa and becomes almost constant above 40 MPa. The
difference betwennVSV x45z andVSHx45z increases with
increasing pressure. This phenomenon is interpreted as
a coupled effect of the crack anisotropy and the intrinsic
anisotropy of the biotite-rich rock.

Fig. 2 MeasuredP - andS-velocities of the Hidaka
biotite schist as a function of confining pressure. Ve-
locities measured at thexz-plane are shown in the fig-
ure.

Fig. 3 P - andS-wave velocities as a function of crack
density.
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Discussion

We interpret the velocity change under confining pressure
by an inclusion model where oriented cracks are aligned
in a transversely isotropic matrix containing biotite crys-
tals. Fig. 3 shows changes of theP -, SV - and SH-
velocities with respect to the crack density. The velocities
in the directionθ=45◦ (VPx45z, VSV x45z andVSHx45z)
are shown together with the velocities in thex- andz-
directions. Crack densityε is defined by porosityφ and
aspect ratio of crackα as

ε = 3φ/4πα . (15)

VPx45z is not sensitive to crack density: the sensitivity is
almost same asVPx, although the absolute velocity value
is smaller thanVPx. VSHx45z is almost constant with re-
spect to crack density. However, theVSV x45z decreases
with increasing crack density, and crosses theVSHx45z

at the crack density about 0.04. Since decrease of con-
fining pressure is equivalent to increase of crack den-
sity, the calculated results agree with the experimental
results. We conclude that the experimental results can be
successfully interpreted by using a crack model having
aligned cracks in the matrix of TI-type anisotropy con-
taining aligned biotite crystals.

The bulge ofSV -wave is important for analyzing the
shear wave data. First, the bulge affects the group veloc-
ity of SV -wave, forming a cusp in the wave front (Banik,
1987; Hornby, 1994). The cusp will produce compli-
cated waveforms and may cause serious problems for
data analysis in seismic explorations. Second, the magni-
tude ofSV -wave bulge is controlled mainly by the fluid
bulk modulus. When the crack-filling fluid changes its
phase, for example, from liquid to gas, a considerable
change of theSV -velocity is expected in the directions
aroundθ=45◦. This will affect shear wave splitting, and
may be important to monitor underground environments.

Conclusions

We have examined velocity anisotropy of a rock hav-
ing oriented cracks in a strong TI anisotropic medium.
The measured velocity under different confining pressure
for Hidaka biotite schist can be successfully explained
by closure of oriented cracks under confining pressure.
The change of the bulge in theSV -phase velocity sur-
face will affect interpretation of shear wave splitting or
waveform analysis. The bulk modulus of the crack-filling
material is an important factor that controls the velocity
anisotropy.
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