地震活動異常と地殻変動異常 と前駆的非地震性すべり

尾形良彦(統数研·総研大)

Anomalies in seismic activity and transient crustal deformation

Ogata, Yosihiko The Institute of Statistical Mathematics, and the Graduate University for Advanced Studies **ETAS model:**

豊後水道のすべり

福岡県西方沖のすべり

表1 受け手の断層パラメタとΔCFS 値

	Table 1.	Assumed	receiver	fault	configu	irations	and	∆CFS	values
--	----------	---------	----------	-------	---------	----------	-----	------	--------

領城	Strike	Dip	Rake	Depth	ΔCFS^{*} (milli-bars)		Seismicity change	
	(deg.)	(deg.)	(deg.)	(km)	福岡県西方沖	豊後水道	(ΔAIC^{**})	
Α	210	30	90		0.	-50. ~ +150.	Normal	
ъ	45	90	180	10	0.	-2.	NT 1	
в	90	45	- 90	10	0.	-1.	Normal	
С	179	55	- 82	45	+4.	-8.	Normal	
D	135	90	0	10	-2.	-7.	Quiet (- 7.8)	
E	135	90	0	10	+5. ~ +50.	- 4.	Activate (+3.1)	
T.	90	90	180	10	-1.	- 20.	0	
F	90	45	- 90	10	+1.	- 8.	Quiet (- 1.8)	
C	170	75	- 90		0.	-1. ~ +1. (bar)	0	
9	330	35	- 110		0.	-1. ~ +1. (bar)	Quiet (- 75.2)	
Η	45	90	180	10	- 1.	+8.	Quiet (- 65.6)	
Ι	225	45	180		- 4.	- 2.		
	45	90	180	10	- 4.	- 4.	0.14(20.2)	
	90	80	- 50	10	- 4.	- 2.	Quiet (- 29.2)	
	90	45	- 90		- 3.	- 1.		
J	280	90	0	10	- 1.	-0.3	Quiet (- 194.2)	

(*) 福岡県西方沖の場合は本震の10%分の前駆すべり量を仮定している。

^(**) 正常な場合の ETAS と変化がある場合の 2 つ分の ETAS モデルの変化点補正済みの AIC の差 (変化点パラメタの調節に対して約 3.0 のペナルティを課している^{2,3)})。

2004 Chuetsu M6.8

Figure 7. Daily position estimates for the (left) horizontal west-east, (middle) horizontal north-south, and (right) vertical coordinates of the GEONET stations A-T relative to their medians. The marked unit in vertical axis indicates 10 cm in distance. The thin vertical lines in 2004 indicate the occurrence time of the Chuetsu earthquake.

Residual time series of distances

2007 Noto Peninsula M6.9

2007 Chuetsu-Oki M6.8

Magnitude

2007年能登半島 地震の余震活動 の2007年7月20日までの、 MT図と累積関数。右側図 は下限マグニチュードが M2.5で、左側はM2.0の余 震。赤い累積曲線は、本 震後一定の時間(右側図) は0.02日で左側図は0.1 日)から変化点(78日)ま での余震データにETASモ デルをあてはめて残りの 期間を予測した、理論的 累積曲線。横軸は,上図 が通常の時間推移で、下 図がETASモデルによる変 換時間。

Summary

- The ETAS model summarizes the seismicity due to triggering effect within the contiguous hierarchical complex faults.
- Deviations of the seismic activities from the predicted rate by the ETAS model are useful to detect regional stress changes.
- The respective deviations are explained by the changes in Coulomb failure stresses that are caused by seismic or aseismic slips.
- These are further supported by transient crustal movement around the source due to the aseismic slips preceding the ruptures.

Software and manuals are available: Search "SASeis2006" by Google

Ogata (2005, JGR) Period of anomaly: mid1996 ~ mid2003 138E 140E 142E 146E 144E 46N. S= 631 T= 1363 Tend= 4009.5 43.5N DEPTH < 100.0km M≧1.0 M>= 2: µ=0.37307 K=0.021576 CUMULATIVE NUMBER OF EVENTS c=.00042411 α=5.528e-15 p=0.84566 M>= 2.5: µ= 0.26141 K=1.4255e-12 500 c=.020303 α=0.12381 p=7.6951 43,0N M>= 3: μ= 0.06016 K= 2.2145e-11 c=.0094544 α=1.3156e-12 p= 5.9262 8 M≥2.0 42.5N U 44N 42.0N 200 M≧2.5 M≧3.0 41,5N 94 **▲ '98** '00 ▲ '02 Ĥ Т U 42N '98 '00 '94 '96 'Ò2 CUMULATIVE NUMBER OF EVENTS 2000 4000 6000 8000 ORDINARY TIME (DAYS) 3000 2000 B M≧2.8 M≧2 41.0N-000 mu= 0,11961 K0= 288,24 c= 0,19803 0,4331 K0= 106,06 c= 0.00046127 40N alpha= 1,8924 p= 1,234 alpha= 1.6554 p= 0.88201 M>= 2,8 S=0,75 T= 1176 Tend= 3761,4 2 S=537 T= 1176 Tend= 3761.4 M 40,51 0 0 فاحتر بغاريا ليرجكم لترجيه أيتارك أس 94 96 98 '00' '02 '96 '98. '00' '02 00 02 98 ORDINARY TIME (DAYS) OPDINARY TIME (DAYS) M > 0.0M≧1.5 M > 0.0 M≧2.0 40.5 40.5 HTTTTUDE ш **B** 40.0 39.5 39.4 '97 '97 95 96 97 95 96 97 '95 96 95 196 500 EVENTS CUMULATIVE NUMBER OF EVENTS 1000 mu= 0.36853 K0= 0.00066758 c= 0.00098204_ CUMULATIVE NUMBER OF EVENTS EVENTS mu= 0.6459 K0= 0.005026 c= 0.00076635 2000 3000 alpha= 1.1379 p= 1.268 alpha= 0.82058 p= 1.0842 40 800 U NUMBER OF E NUMBER OF 2000 800

000

'95

M>= 0.01 S= 30 T= 553 Tend= 1100

mu= 0,29536 K0= 3,2051 c= 0,0015615

QRDINARY TIME (years)

'97

alpha= 0.97013 p= 0.90669

'96

ATIVE I 500

CUMUL

'98

'95

M>= 2 S= 30 T= 553 Tend= 1100

'97

mu= 0,1756 K0= 9,7259 c= 0,0018183

ORDINARY TIME (years)

alpha= 1,4771 p= 0,92497

'96

600 400

200

C

'95

M>= 0.01 S= 0 T= 519 Tend= 1095

ORDINARY TIME (years)

'96

'97

200

0

'95

M>= 1.5 S= 0 T= 519 Tend= 1095

ORDINARY TIME (years)

'97

'96

CUMULATIVE 8 Back slip rate estimate during 1998-2003AUG by inversion of GPS network

146E

144E

148E 150E 152E

Suwa et al. (2006, JGR)

Back slip rate 1997-2001

Thank you very much for listening

Software and manuals are available at <u>http://www.ism.ac.jp/~ogata/Ssg/softwaresE.html</u> Search "**SASeis2006**" by Google

No-Change

Coseismic Slip duringthe first 60 seconds

Yagi (2004) EPS

Fig. 6. Snapshots of surface projection of the dislocation at every 5 sec. The star indicates the epicenter.

Cumulative Slip for 30days From the mainshock

Miyazaki et al. (2004) GRL

Co- & Post-seismic slip Ozawa et al. (2004) EPS

