Collaboratory for the Study of Earthquake Predictability

RTHQUAKE

CEN

First Results of the Regional Earthquake Likelihood Models Experiment

Danijel Schorlemmer

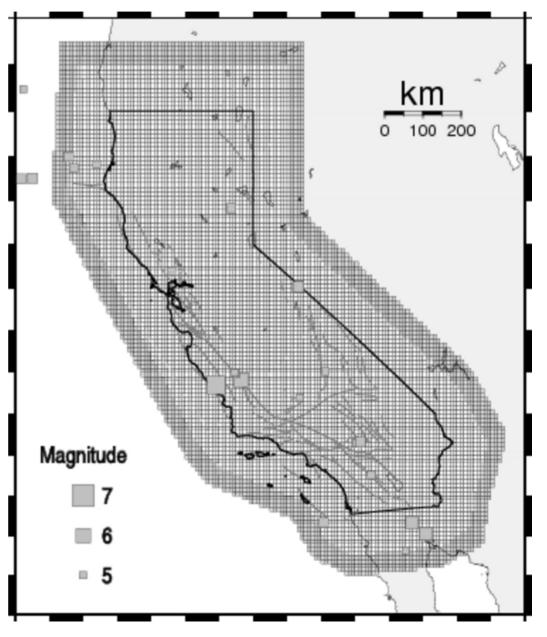
Jeremy D. Zechar, Max J. Werner, E.H. Field, D.D. Jackson, T.H. Jordan and the RELM Working Group

Rules

Classes

- 5-year mainshock
- 5-year main-/aftershock

Forecast


- 0.1x0.1 degree bins
- Rates for M5-9 (0.1 step)
- Masking possible

Data

- ANSS Catalog
- 1 month delay

Test

– L-, N-, R-Test

RELM Mainshock Models

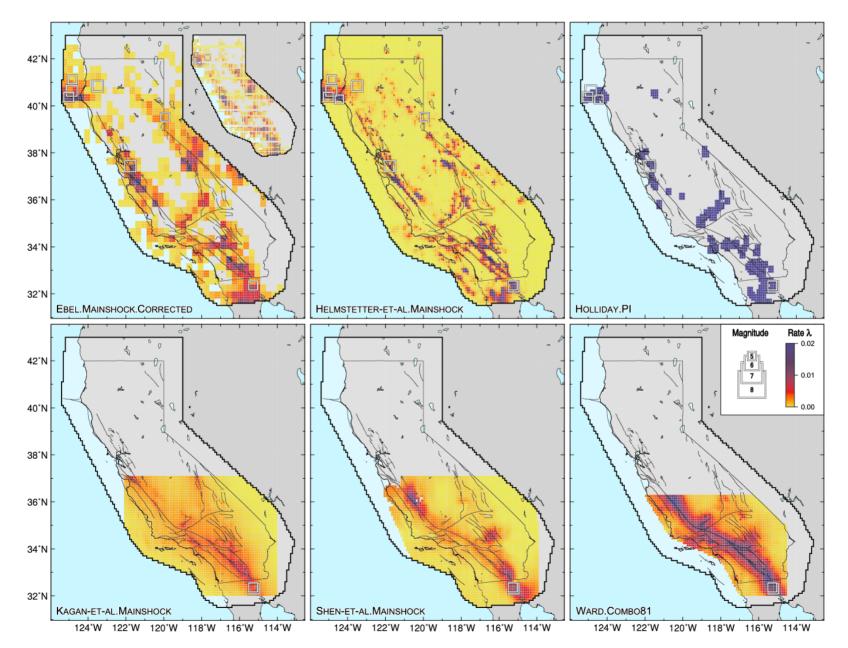
Е

ARTHQUAKE

CENTER

<u>s о и т н</u>

SC/EC


E

RN

C A

FOR

Ζ

RELM Mainshock Models

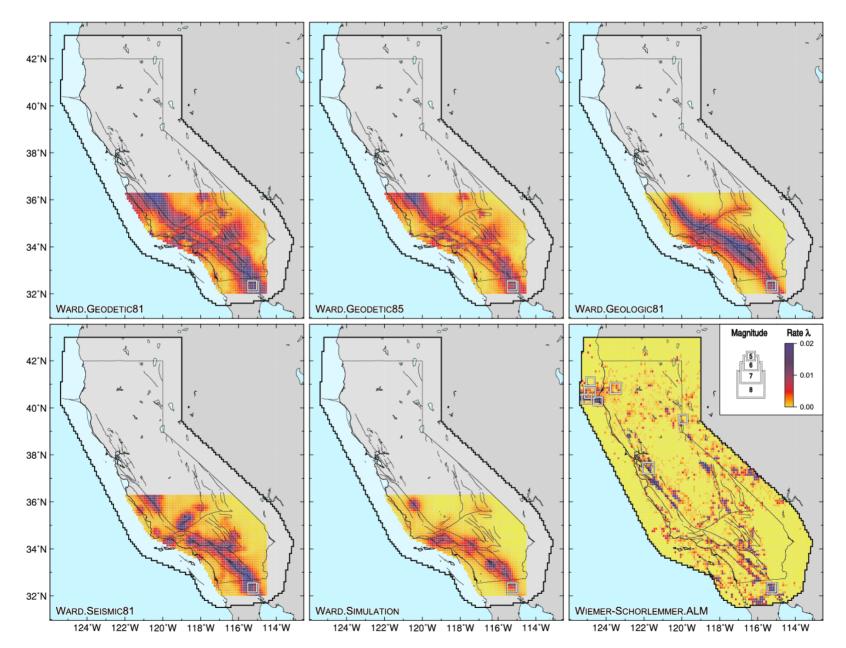
Е

ARTHQUAKE

CENTER

<u>s о и т н</u>

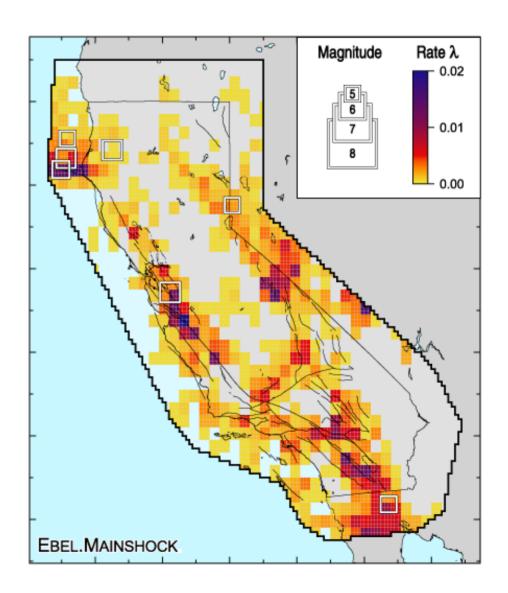
SC/EC


Ε

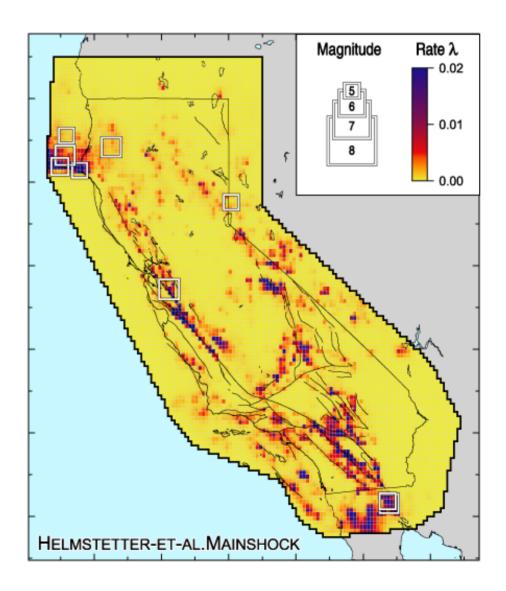
RN

C A

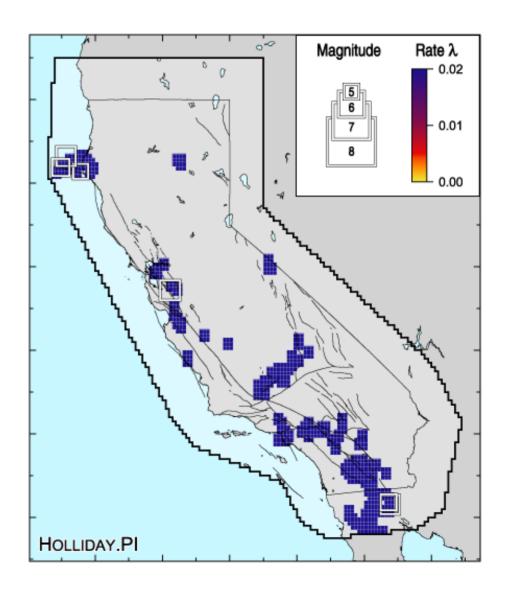
FOR


Ζ

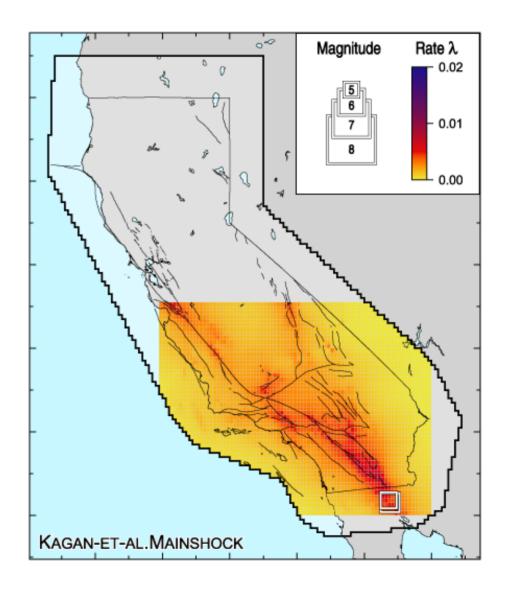
Ebel


- Decluster 1932-2004
 catalog
- Determine average 5 yr rate of M5+ events in 3°x3° cells
- Use Gutenberg-Richter relation to extrapolate

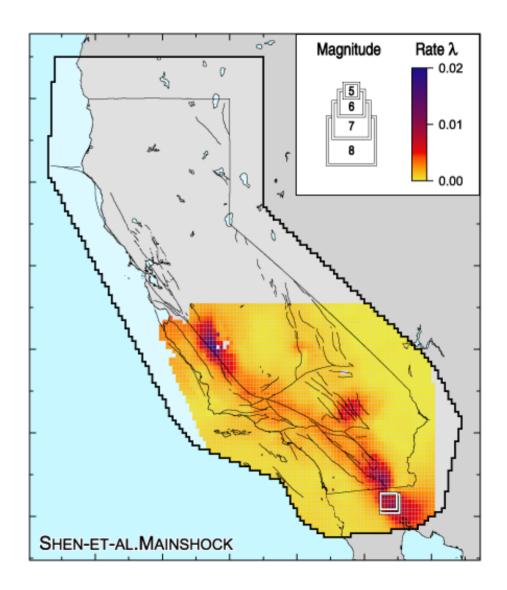
Helmstetter et al.


- Power-law smoothing of M2+ events
- Bandwidth is densitydependent and optimized
- Account for spatially-varying M_c

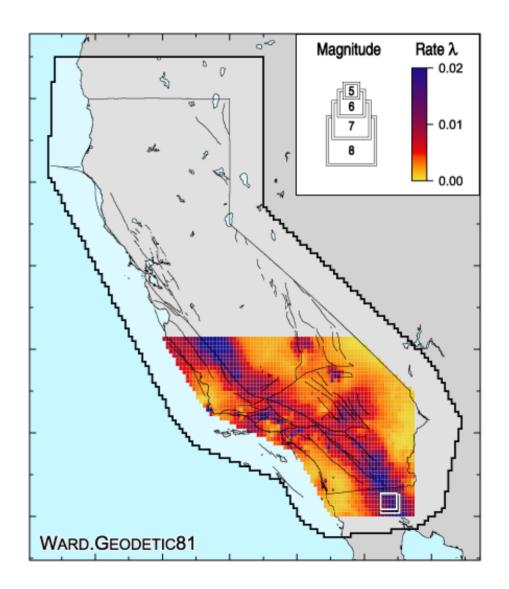
Holliday


- Search for recent changes in seismicity of each cell relative to long-term behavior
- Activation and quiescence
- One variant of the Pattern Informatics method

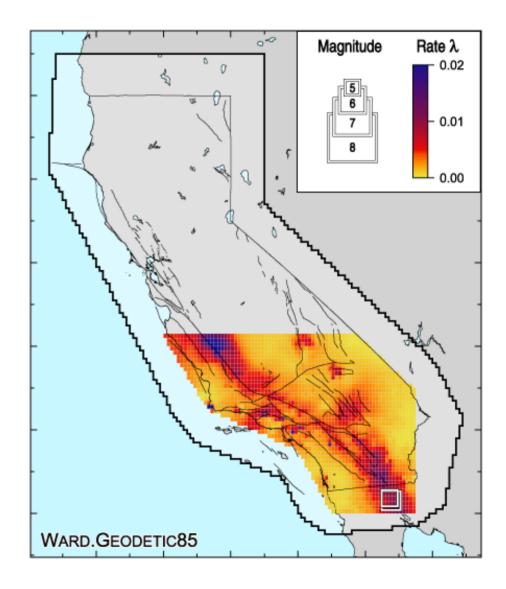
Kagan et al.


- Smooths large events in southern California since 1800
- Includes spatial anisotropy, extending the event along the presumed fault

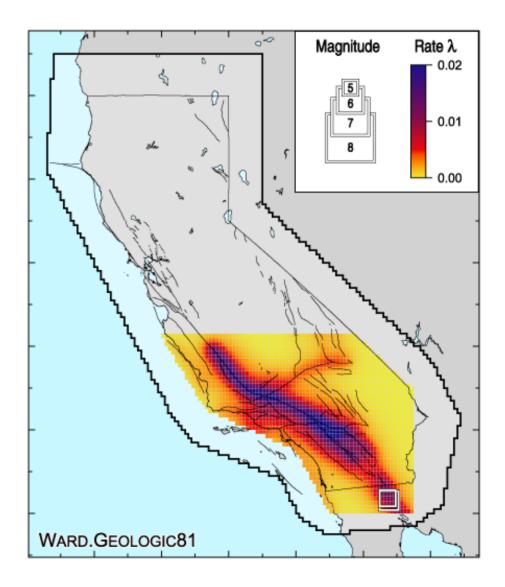
Shen


- Uses GPS data
- Assumes seismicity rate is proportional to horizontal maximum shear strain rate
- Uses tapered
 Gutenberg-Richter
 relation for extrapolation

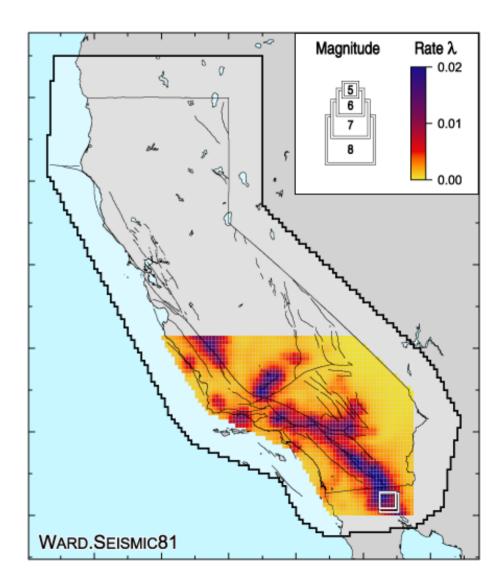
Ward [Geodetic81]


- Uses larger GPS dataset
- Slight variation on mapping strain rate to seismicity rate
- Assumes maximum magnitude $M_{max} = 8.1$

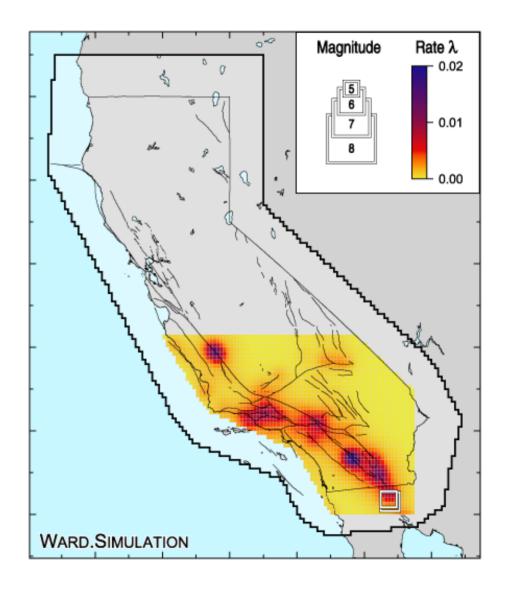
Ward [Geodetic85]


- Same as previous, except assuming $M_{max} = 8.5$

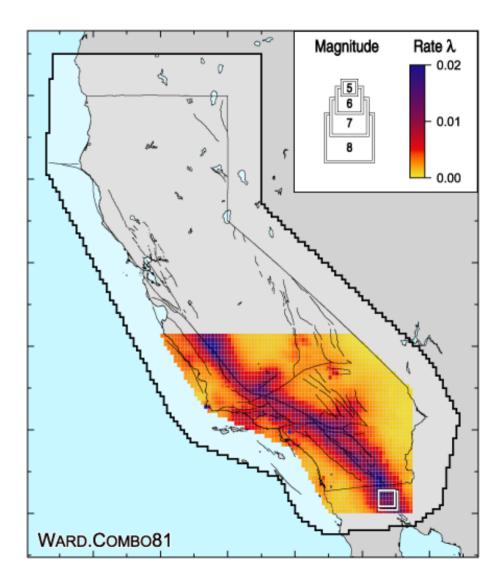
Ward [Geologic81]


- Uses geologic data
- Maps slip rates to smoothed moment rate density, then to seismicity rate

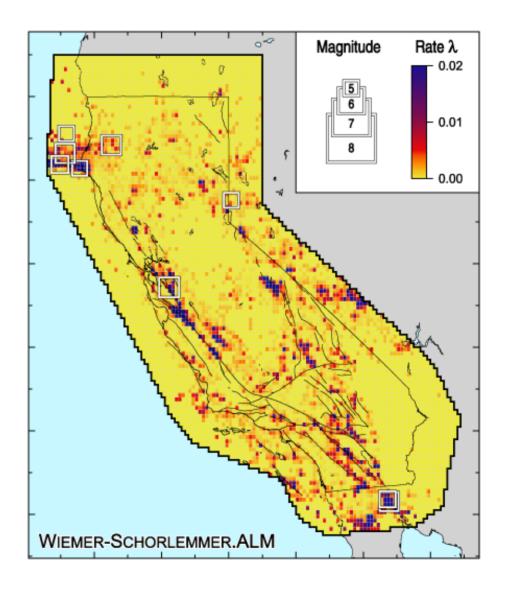
Ward [Seismic81]


 Smooths large events since 1850

Ward [Simulation]


- Derived from "physicsbased" simulations of velocity-weakening friction on a prescribed fault network
- One variant of the ALLCAL earthquake simulator

Ward [Combo81]


Average of Ward's forecasts

Wiemer & Schorlemmer

- Estimates Gutenberg-Richter a- and b-values in every cell
- Variations in these parameters are assumed to indicate presence of asperities

Target Earthquakes (2.5 Years)

SC/EC

Е

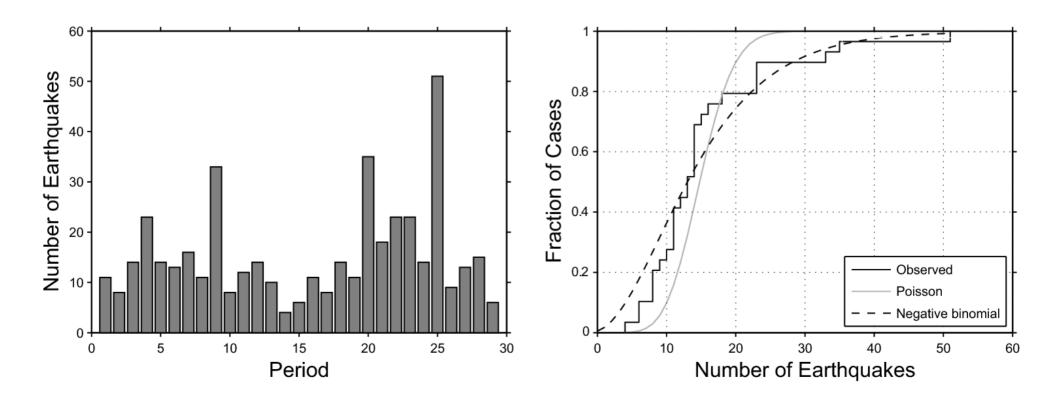
А

R

HQUAK

C E

Ζ


TER

No.	Origin Time (UTC)	Latitude	Longitude	M_w	P_{I}
1	24 May 2006, 4:20	32.31	-115.23	5.37	0.24
2	19 Jul 2006, 11:41	40.28	-124.43	5.00	1.00
3	26 Feb 2007, 12:19	40.64	-124.87	5.40	1.00
4	9 May 2007, 7:50	40.37	-125.02	5.20	1.00
5	25 Jun 2007, 2:32	41.12	-124.82	5.00	1.00
6	$31 \text{ Oct } 2007, 3{:}04$	37.43	-121.77	5.45	1.00
$\overline{7}$	9 Feb 2008, 7:12	32.36	-115.28	5.10	0.04
8	11 Feb 2008, 18:29	32.33	-115.26	5.10	0.96
9	12 Feb 2008, 4:32	32.45	-115.32	4.97	0.11
10	19 Feb 2008, 22:41	32.43	-115.31	5.01	0.26
11	30 Apr 2008, 3:03	40.84	-123.50	5.40	1.00

Target Earthquakes (2.5 Years)

- We compared earthquake rates
 (1 January 1932 30 June 2004)
- Low activity (not significantly)

L-, N-Tests for consistency of forecasts with observation

Model	γ	δ
Ebel.Mainshock	[0.017]	0.631
Helmstetter-et-al.Mainshock	0.604	0.511
Holliday.PI	0.954	0.050
KAGAN-ET-AL.MAINSHOCK	0.730	0.285
Shen-et-al. Mainshock	0.667	0.400
Ward.Combo81	0.966	0.041
WARD.GEODETIC81	0.997	[0.007]
WARD.GEODETIC85	0.854	0.173
WARD.GEOLOGIC81	0.922	0.082
WARD.SEISMIC81	0.893	0.102
WARD. SIMULATION	0.146	0.682
WIEMER-SCHORLEMMER.ALM	0.473	0.361

Model	0	1	2	3	4	5	6	7	8	9
0 Helmstetter-et-al.Mainshock		[1.000]	[1.000]	[0.999]	[1.000]	[1.000]	[1.000]	[1.000]	[1.000]	[1.000]
1 Holliday.PI	0.708	_	0.973	0.864	0.449	0.826	0.749	0.438	[1.000]	0.559
2 Kagan-et-al.Mainshock	0.738	[0.013]		0.030	0.799	0.672	0.812	0.518	[1.000]	0.635
3 Shen-et-al. Mainshock	0.328	[0.003]	[0.000]		[0.990]	[1.000]	[0.991]	0.964	[1.000]	0.766
4 Ward.Combo81	0.868	[0.003]	0.085	0.626	_	0.759	0.836	0.254	[1.000]	0.062
5 WARD. GEODETIC85	0.868	[0.009]	0.076	[0.994]	0.217		0.934	0.612	[1.000]	0.059
6 WARD.GEOLOGIC81	0.704	[0.007]	0.045	0.450	0.174	0.104		0.729	[1.000]	0.164
7 WARD. SEISMIC81	0.798	[0.003]	[0.008]	0.314	[0.025]	0.042	[0.024]		[1.000]	0.138
8 WARD. SIMULATION	0.943	0.185	0.858	0.956	0.518	0.636	0.611	0.689	_	0.053
9 Wiemer-Schorlemmer. ALM	0.367	[0.000]	[0.000]	[0.001]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	

Model	0	1	2	3	4	5	6	7	8	9
0 Helmstetter-et-al.Mainshock		[1.000]	[1.000]	[0.999]	[1.000]	[1.000]	[1.000]	[1.000]	[1.000]	[1.000]
1 Holliday.PI	0.708	_	0.973	0.864	0.449	0.826	0.749	0.438	[1.000]	0.559
2 Kagan-et-al.Mainshock	0.738	[0.013]		0.030	0.799	0.672	0.812	0.518	[1.000]	0.635
3 Shen-et-al. Mainshock	0.328	[0.003]	[0.000]		[0.990]	[1.000]	[0.991]	0.964	[1.000]	0.766
4 Ward.Combo81	0.868	[0.003]	0.085	0.626		0.759	0.836	0.254	[1.000]	0.062
5 Ward. Geodetic 85	0.868	[0.009]	0.076	[0.994]	0.217		0.934	0.612	[1.000]	0.059
6 WARD.GEOLOGIC81	0.704	[0.007]	0.045	0.450	0.174	0.104		0.729	[1.000]	0.164
7 WARD.SEISMIC81	0.798	[0.003]	[0.008]	0.314	[0.025]	0.042	[0.024]	—	[1.000]	0.138
8 WARD. SIMULATION	0.943	0.185	0.858	0.956	0.518	0.636	0.611	0.689	_	0.053
9 Wiemer-Schorlemmer. ALM	0.367	[0.000]	[0.000]	[0.001]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	

Model	0	1	2	3	4	5	6	7	8	9
0 Helmstetter-et-al.Mainshock		[1.000]	[1.000]	[0.999]	[1.000]	[1.000]	[1.000]	[1.000]	[1.000]	[1.000]
1 Holliday.PI	0.708	_	0.973	0.864	0.449	0.826	0.749	0.438	[1.000]	0.559
2 Kagan-et-al.Mainshock	0.738	[0.013]		0.030	0.799	0.672	0.812	0.518	[1.000]	0.635
3 Shen-et-al. Mainshock	0.328	[0.003]	[0.000]		[0.990]	[1.000]	[0.991]	0.964	[1.000]	0.766
4 Ward.Combo81	0.868	[0.003]	0.085	0.626	_	0.759	0.836	0.254	[1.000]	0.062
5 Ward. Geodetic85	0.868	[0.009]	0.076	[0.994]	0.217		0.934	0.612	[1.000]	0.059
6 WARD. GEOLOGIC81	0.704	[0.007]	0.045	0.450	0.174	0.104		0.729	[1.000]	0.164
7 WARD.SEISMIC81	0.798	[0.003]	[0.008]	0.314	[0.025]	0.042	[0.024]	_	[1.000]	0.138
8 WARD. SIMULATION	0.943	0.185	0.858	0.956	0.518	0.636	0.611	0.689		0.053
9 WIEMER-SCHORLEMMER.ALM	0.367	[0.000]	[0.000]	[0.001]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	

Model	0	1	2	3	4	5	6	7	8	9
0 Helmstetter-et-al.Mainshock		[1.000]	[1.000]	[0.999]	[1.000]	[1.000]	[1.000]	[1.000]	[1.000]	[1.000]
1 Holliday.PI	0.708	_	0.973	0.864	0.449	0.826	0.749	0.438	[1.000]	0.559
2 Kagan-et-al.Mainshock	0.738	[0.013]		0.030	0.799	0.672	0.812	0.518	[1.000]	0.635
3 Shen-et-al. Mainshock	0.328	[0.003]	[0.000]		[0.990]	[1.000]	[0.991]	0.964	[1.000]	0.766
4 Ward.Combo81	0.868	[0.003]	0.085	0.626	_	0.759	0.836	0.254	[1.000]	0.062
5 WARD. GEODETIC85	0.868	[0.009]	0.076	[0.994]	0.217		0.934	0.612	[1.000]	0.059
6 WARD. GEOLOGIC81	0.704	[0.007]	0.045	0.450	0.174	0.104		0.729	[1.000]	0.164
7 WARD.SEISMIC81	0.798	[0.003]	[0.008]	0.314	[0.025]	0.042	[0.024]	—	[1.000]	0.138
8 WARD.SIMULATION	0.943	0.185	0.858	0.956	0.518	0.636	0.611	0.689	_	0.053
9 Wiemer-Schorlemmer. ALM	0.367	[0.000]	[0.000]	[0.001]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	

Mainshock/Aftershock Models

EC

SC/

Е

R

н

QUAK

Ε

 \subset Е Ζ

ER

Model		γ	δ
Bird-Liu.Neokinema	1	.000	[0.000]
Ebel.Aftershock	1	.000	[0.000]
Helmstetter-et-al.Aftersho	оск 0	.976	0.035
KAGAN-ET-AL.AFTERSHOCK	0	.894	0.100
Shen-et-al.Aftershock	0	.891	0.145
Model	0	1	2
0 Helmstetter-et-al.Aftershock		[1.00	0] [1.000]
1 Kagan-et-al.Aftershock	0.334	-	0.087
2 Shen-et-al.Aftershock	0.112	[0.00)2] —

Target Earthquakes (4.5 Years)

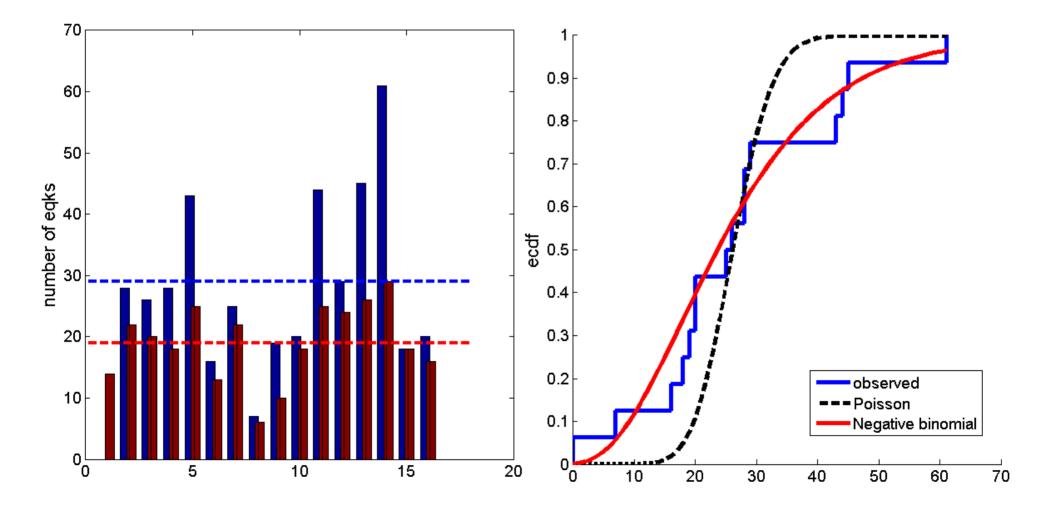
SC/EC

Е

R

HQUAKE

C E


Ζ

TER

No.	Origin Time (UTC)	Latitude	Longitude	$M_{\rm ANSS}$
1	24 May 2006, 04:20	32.31	-115.23	5.37
2	19 Jul 2006, 11:41	40.28	-124.43	5.00
3	26 Feb 2007, 12:19	40.64	-124.87	5.40
4	09 May 2007, 07:50	40.37	-125.02	5.20
5	25 Jun 2007, 02:32	41.12	-124.82	5.00
6	31 Oct 2007, 03:04	37.43	-121.77	5.45
7	09 Feb 2008, 07:12	32.36	-115.28	5.10
8	11 Feb 2008, 18:29	32.33	-115.26	5.10
9	12 Feb 2008, 04:32	32.45	-115.32	4.97
10	19 Feb 2008, 22:41	32.43	-115.31	5.01
11	26 Apr 2008, 06:40	39.53	-119.93	5.00
12	30 Apr 2008, 03:03	40.84	-123.50	5.40
13	29 Jul 2008, 18:42	33.95	-117.76	5.39
14	20 Nov 2008, 19:23	32.33	-115.33	4.98
15	06 Dec 2008, 04:18	34.81	-116.42	5.06
16	$19 \mathrm{Sep} 2009, 22{:}55$	32.37	-115.26	5.08
17	01 Oct 2009, 10:01	36.39	-117.86	5.00
18	03 Oct 2009, 01:16	36.39	-117.86	5.19
19	30 Dec 2009, 18:48	32.46	-115.19	5.80
20	10 Jan 2010, 00:27	40.65	-124.69	6.50
21	04 Feb 2010, 20:20	40.41	-124.96	5.88
22	04 Apr 2010, 22:40	32.26	-115.29	7.20
23	04 Apr 2010, 22:50	32.10	-115.05	5.51
24	04 Apr 2010, 23:15	32.30	-115.26	5.43
25	04 Apr 2010, 23:25	32.25	-115.30	5.38
26	05 Apr 2010, $00:07$	32.02	-115.02	5.32
27	05 Apr 2010, 03:15	32.63	-115.81	4.97
28	08 Apr 2010, 16:44	32.22	-115.28	5.29
29	15 Jun 2010, 04:26	32.70	-115.92	5.72

Target Earthquakes (4.5 Years)

 \sim

Е

А

R

Т

HQUAKE

C E

Ζ

TER

S

SC

0

U

EC

Ν

Model	γ	κ		δ	ζ
Ebel.Mainshock	[0.010]	0.389	0.394	0.697	[0.000]
Helmstetter-et-al.Mainshock	0.478	0.265	0.5325	0.559	0.340
Holliday.PI	0.987	0.130	0.992	[0.015]	[0.000]
Kagan-et-al.Mainshock	0.591	0.278	0.636	0.485	0.801
Shen-et-al. Mainshock	0.444	0.272	0.468	0.655	0.842
Ward.Combo81	0.988	0.190	0.995	[0.012]	0.804
WARD.GEODETIC81	1.000	0.197	1.000	[0.001]	0.772
WARD.GEODETIC85	0.917	0.195	0.933	0.120	0.795
WARD.GEOLOGIC81	0.960	0.186	0.982	0.0377	0.267
WARD.SEISMIC81	0.960	0.164	0.973	0.0530	0.656
WARD. SIMULATION	0.117	0.070	0.357	0.767	0.324
WIEMER-SCHORLEMMER.ALM	0.331	0.514	0.724	0.356	[0.000]

Lessons learned

- Difficulties in R-Test interpretation
 Development of improved tests: T-Test, W-Test
- Account for negative binomial distribution in new forecasts
- Focus on time-dependent models

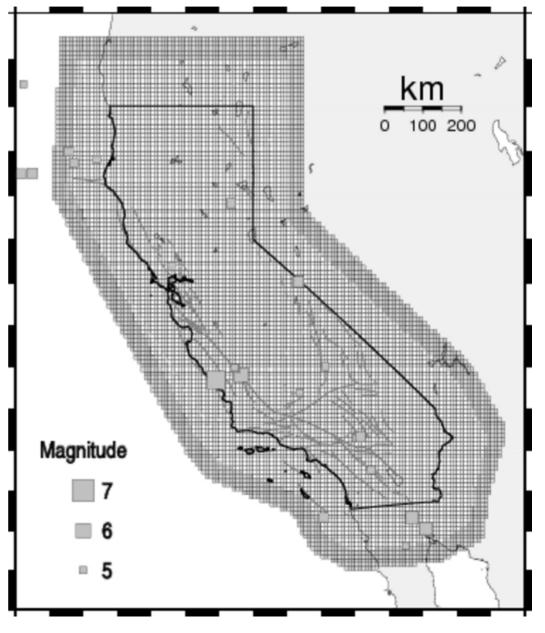
SOUTHERN CALIFORNIA EARTHQUAKE CENTER

1-Day Models

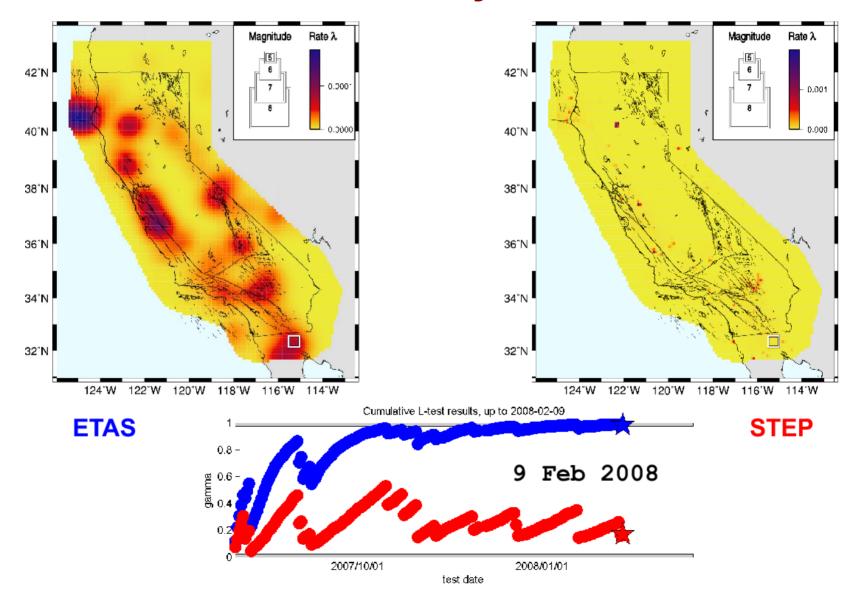
Classes

1-day main-/aftershock

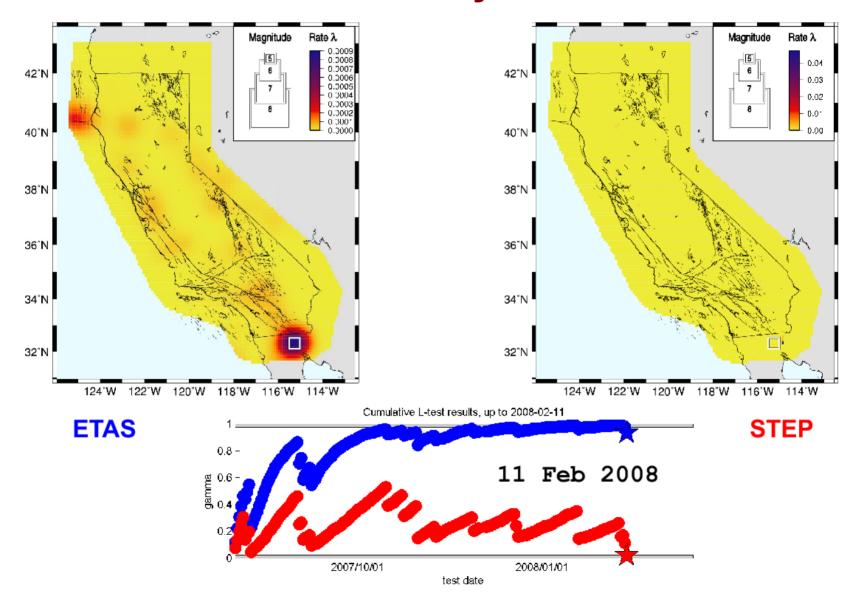
Forecast

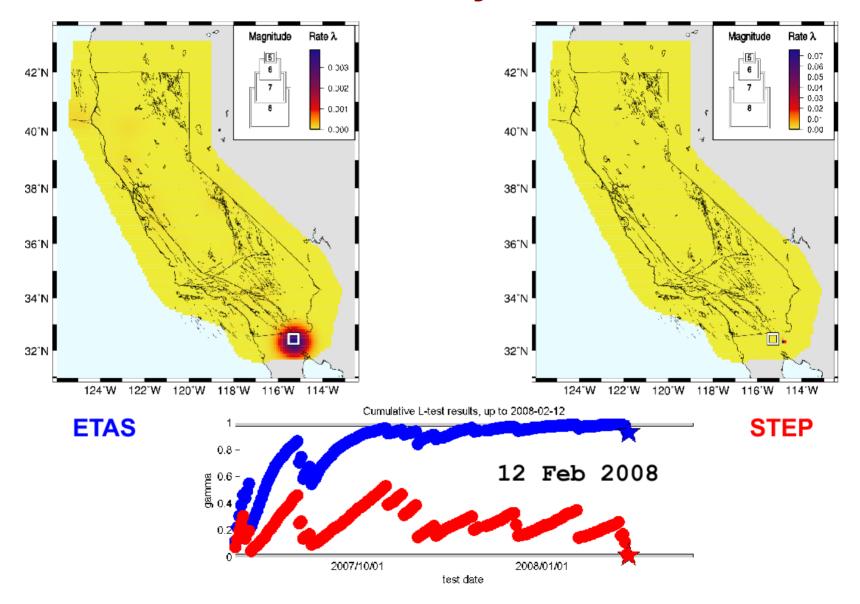

- 0.1x0.1 degree bins
- Rates for M4-9 (0.1 step)
- Masking possible

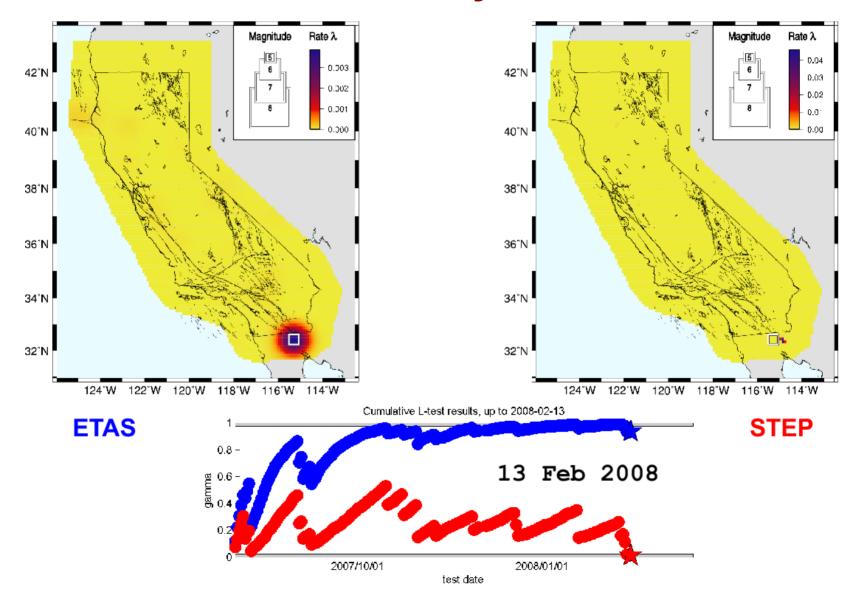
Data

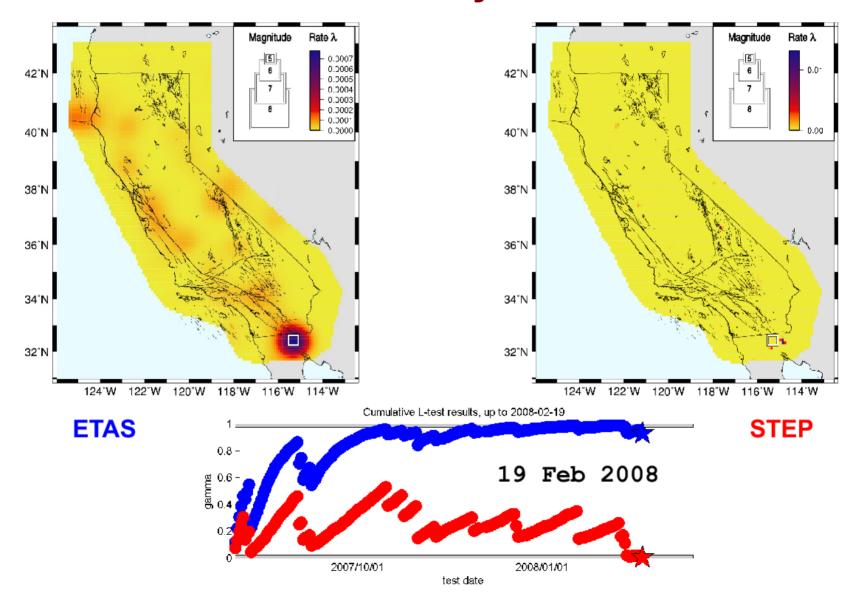

- ANSS Catalog
- 1 month delay

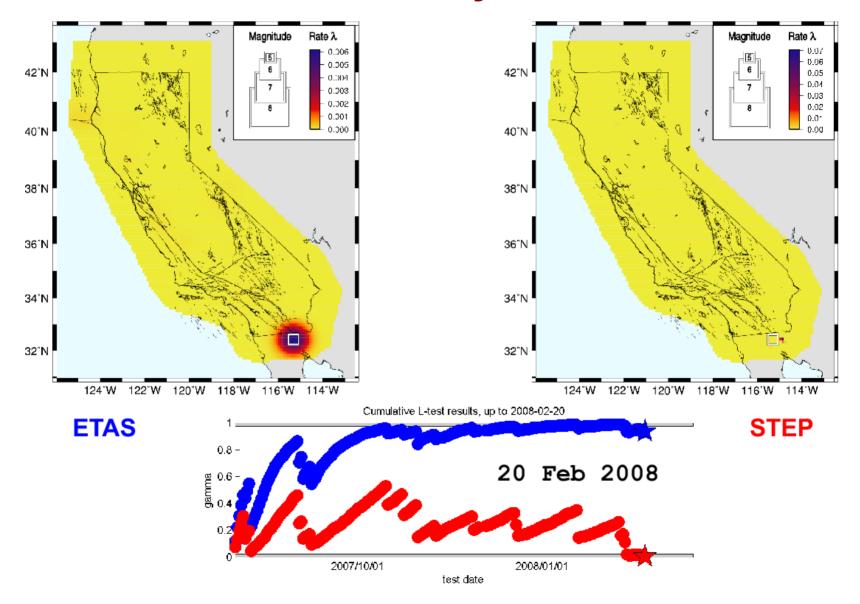
Test

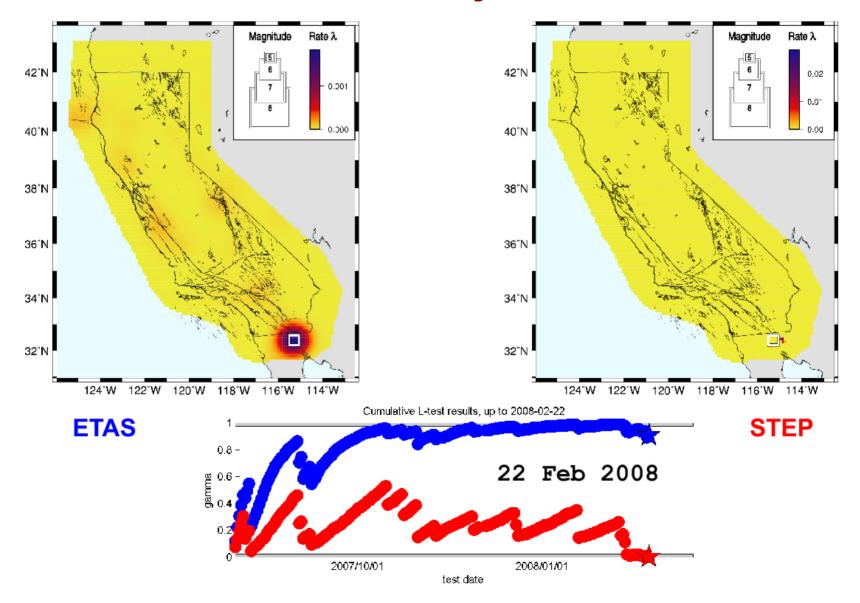

– L-, N-, R-Test











Summary

- Meaningful results within 5 years
- Smoothed-seismicity models showed best performance
- Successful standardization and consensus
- Manuscript recently published

