Evaluating performance of
earthquake prediction relative to a
baseline model through the gambling
scoring methodJiancang Zhuang
Institute of Statistical Mathematics

Outlines

• Part I: How to use the background seismicity in long-term earthquake forecasting?

Part II: How to use gambling scores without a reference model? Non-referenced gambling scores

Part I Using Background Seismicity as a Reference Model

Spatiotemporal long-term earthquake probability models

- Poisson model (smoothed seismicity) overpredict numbers
- Poisson model (smoothed declustered catalogs) argument on declustering algorithms

 Background seismicity models – Obtained from stochastic declustering based on a clustering model, explicitly (space-time ETAS model) or implicitly (MISD).

Question: How to use background seismicity for long-term earthquake probability forecast

• ETAS model = Background + Triggered seismicity

• Is a model of "background seismicity" + "Gutenberg-Richter law" still valid?

• Answer: Yes, but only for background seismicity, not for the biggest event.

Assumptions of the model (A simpler version of the ETAS model)

- Background seismicity $\mu(x, y)$: function of spatial locations but stationary in time
- Each event of magnitude *m* triggers a cluster of mean size $\kappa(m) = Ae^{\alpha(m-m_c)}$

• The magnitude distribution of all the events are identically independently distributed according to the Gutenberg-Richter law

 $s(m) = 10^{-b(m-m_c)} b \ln 10, \quad m \ge m_c$

- Temporal component is neglected, for the process is stationary
- Spatial component is neglected, because clusters concentrate at the location of the mainshock.

Magnitude distribution of the largest event in a cluster is not G-R law any longer, but

 $G(m) = \Pr\{\text{the biggest event is less than } m\}$

- = $\Pr\{\text{all the events in the cluster is less than }m\}$
- $= \Pr\{\text{the initiate is less than } m \text{ and all events in each } \}$

family of its direct children is less than m}

m Pr{all events in each child's family is less than $m \mid m_{initiate} = m^*$ }

 $\sum_{n=0}^{\infty} \int_{m_0}^{m} \Pr\{\text{all events in each child's family is less than } m \mid n \text{ children in total} \\ m_{initiate} = m^*\} \Pr\{n \text{ children in total} \mid m_{initiate} = m^*\} \times s(m^*) \, \mathrm{d}m^*$

$$\sum_{n=0}^{\infty} \int_{m_{\sigma}}^{m} G^{n}(m) \frac{\kappa(m^{*})}{n!} e^{-\kappa(m^{*})} s(m^{*}) dm^{*}$$

 $e^{G(m)\kappa(m^{*})}e^{-\kappa(m^{*})}s(m^{*})dm^{*}$

 $e^{-\kappa(m^*)[1-G(m)]}s(m^*)dm^*$

Zhuang & Ogata (PRE, 2006)

 $\times s(m^*) dm^*$

Magnitude distribution of the largest event

• Magnitude distribution of the largest event in a cluster is not G-R law any longer, but

 $G(m) = \int_{m_c}^{m} e^{-\kappa(m^*)[1-G(m)]} s(m^*) \mathrm{d}m^*$

a functional equation but can be solved numerically. The complementary function (Zhuang and Ogata, 2006, Physical Review E)

 $F(m) = 1 - G(m) = 1 - \int_{m}^{m} e^{-\kappa(m^{*})F(m)} s(m^{*}) dm^{*}$

$$F(m) = 1 - \int_{m_c}^{m} e^{-\kappa(m^*)F(m)} s(m^*) \mathrm{d}m^*$$

Solution of the functional equation • Solving $F(m) = 1 - \int_{m_c}^{m} e^{-\kappa(m^*)F(m)}s(m^*)dm^*$ by iterations: for each m $F_{(k+1)}(m) = 1 - \int_{m_c}^{m} e^{-\kappa(m^*)F_{(k)}(m)}s(m^*)dc$ $F_{(0)}(m) = 1$ $F_{(k+1)}(m) = 1 - \int_{m_c}^{m} e^{-\kappa(m^*)F_{(k)}(m)} s(m^*) dm^*$ $F_{(0)}(m) = 1$

Properties of function F(m)

From Zhuang and Ogata, Physical Review E, 2006

A varies

 α varies

 β varies

Distribution of the biggest magnitude in a space-time windows Notations:

• Space-time window V

Expected number of clusters in V,

 $\Lambda(V) = \iiint_V \mu(x, y) \mathrm{d}x \mathrm{d}y \mathrm{d}t$

• Probability mass function for the number of clusters (background events) in *V*,

 $\Pr\{K=k\} = \frac{\Lambda^k(V)}{k!} e^{-\Lambda(V)}$

• Magnitude p.d.f. $s(m) = 10^{-b(m-m_c)}b\ln 10$

 $=\beta e^{-\beta(m-m_c)}, \qquad m\geq m_c$

Distribution of the biggest magnitude in a space-time windows (cont.)

- Cumulative probability distribution function for the biggest magnitude in V
 Q(V,m)
- = $\Pr\{\text{events in all clusters are in } V < m \}$
- $= \sum_{n=0} \Pr\{\text{the biggest in each cluster is } < m \mid n \text{ cluster in total}\}$

 $\times \Pr\{n \text{ cluster in total}\}\$

 $= \sum_{n=0}^{\infty} [G(m)]^n \frac{[\Lambda(V)]^n}{n!} \exp[-\Lambda(V)]$ $= \exp[-\Lambda(V)[1 - G(m)]]$ $= \exp[-\Lambda(V)F(m)]$

Distribution of the biggest magnitude in a space-time windows (cont.)

• Cumulative probability distribution function for the biggest magnitude in V

 $Q(V,m) = \exp[-\Lambda(V)F(m)]$

• However, it is still hard to evaluate the number of earthquake at a certain magnitude ranges, but only possible to evaluate the number of earthquake clusters covers this range.

Results: background ratesin the Japan region

(events/day/deg²)

Results: Reference probability (M>=5, 6, 7)

 $A = 0.17, \quad \alpha = 1.45$

Results: Reference probability Pr{#(M>=5) in 1deg × 1deg × 1yr grid}

Results: Reference probability Pr{#(M>=6) in 1deg × 1deg × 1yr grid}

Results: Reference probability Pr{#(M>=7) in 1deg × 1deg × 1yr grid}

Future researches

1. Incorporating spatially varying A and alpha values – HIST ETAS model

2. Model testing against other models of smoothed seismicity

Part II Gambling scoring method

Gambling score

Question: How to reward the forecaster for a success fairly?

Answer:

 $G = (1 - p_0) / p_0$

 p_0 : prob. given by the reference model that the prediction is correct

Return for each prediction

Earthquake occurrence	Yes	No
Forecaster predicts Yes	$G_{ m yes}$	-1
Forecaster predicts No	-1	$G_{\rm no}$
Forecaster predicts Yes with prob. <i>p</i>	$G_{\text{yes}}p$ -(1- p)	(1- <i>p</i>) <i>G</i> _{no} - <i>p</i>

Publications of applications of the gambling score

Zhuang J. (2010) Gambling scores for earthquake predictions and forecasts . Geophysical Journal International. 181: 382-390

Zechar J. D. and <u>Zhuang J.</u>, (2010), *Risk and return: evaluating Reverse Tracing of Precursors earthquake predictions*. **Geophysical Journal International**, 182, 1319-1326.

G. Molchan and L. Romashkova (2010) *Gambling scores in earthquake* prediction analysis, accepted by **Geophysical Journal International**.

Zhuang and Jiang (2010), *Scoring annual earthquake prediction in China*, submitted to Tectonophysics.

Gambling score without a reference model

Binary occurrence of earthquakes: 1 for grids with earthquake, and 0 for non-earthquake grid
 X₁, X₂, ..., X_N

• Modeler *i* bets

 $p_{1,i}, p_{2,i}, \dots, p_{N,i}$ at least 1 earthquake occurs $1 - p_{1,i}, 1 - p_{2,i}, \dots, 1 - p_{N,i}$ no earthquake occurs

Gambling score without a reference model

• Reward principle: the winners take and divide all.

• Reward to Modeller *i*

 $\frac{p_i}{\sum_{j} p_j}$, if 1 or more event occur; $\frac{1-p_i}{\sum_{j} (1-p_j)}$, if no event occurs;

The model that gets the highest reward is the best.

ore without a reference model there of earthquakes on each of X_1, X_2, \dots, X_N • Modeler *i* bets • $p^{(j)}_{1,l}, p^{(j)}_{2,l}, \dots$ that ...

Gambling score without a reference model

• Reward principle: the winners take and divide all.

• Reward to Modeller *i* for the *j*th grid

 $\frac{p^{(X_j)}_{j,i}}{\sum p^{(X_j)}_{j,k}}, \text{ if } X_j \text{ events occur in } j \text{th grid.}$

• The model that gets the highest reward is the best.

Gambling score without a reference model occurrence of earthquakes: {(t_i, x_i, m_i): i=1,2,...} Modeler *i* gives a conditional intensity λ_i(t, x, m)

Gambling score without a reference model

• Reward principle: the winners take and divide all.

• Reward to Modeller *i* for the *j*th grid

L_i(Grid_j)
∑_kL_k(Grid_j)'
L_i(Grid_j): likelihood of Model *i* on Grid *j*.
The model that gets the highest reward is the best.